FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation
نویسندگان
چکیده
Compelling evidence suggests that the epithelial-mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. FGF19 has been shown to be involved in EMT in cholangiocarcinoma and colorectal cancer, however, molecular mechanisms underlying FGF19-induced EMT process in hepatocellular carcinoma (HCC) remain largely unknown. Here, we show the expression of FGF19 is significantly elevated and negatively associated with the expression of E-cadherin in HCC tissues and cell lines. Ectopic FGF19 expression promotes EMT and invasion in epithelial-like HCC cells through repression of E-cadherin expression, whereas FGF19 knockdown enhances E-cadherin expression and hence diminishes EMT traits in mesenchymal-like HCC cells, suggesting FGF19 exerts its tumor progressing functions as an EMT inducer. Interestingly, depletion of FGF19 cannot abrogate EMT traits in the presence of GSK3β inhibitors. Furthermore, FGF19-induced EMT can be markedly attenuated when FGFR4 is knocked out. These observations clearly indicate that FGFR4/GSK3β/β-catenin axis may play a pivotal role in FGF19-induced EMT in HCC cells. As FGF19 and its specific receptor FGFR4 are frequently amplified in HCC cells, selective targeting this signaling node may lend insights into a potential effective therapeutic approach for blocking metastasis of HCC.
منابع مشابه
MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways
Oncogenic mutations in PIK3CA, the gene encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), occur with high frequency in hepatocellular carcinoma (HCC). The protein kinase Akt is considered to be the primary effector of PI3K, but there is evidence to suggest that serum and glucocorticoid kinase 3 (SGK3) acts in an Akt-independent manner downstream of PI3K. In this report, we fou...
متن کاملMTA1 promotes epithelial to mesenchymal transition and metastasis in non-small-cell lung cancer
The present study assessed the role of metastasis-associated protein 1 (MTA1) in epithelial to mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer (NSCLC) cells using a normal lung epithelium cell line, three NSCLC cell lines, a mouse NSCLC model, and 56 clinical NSCLC samples. We observed that MTA1 overexpression decreased cellular adhesion, promoted migration and invasio...
متن کاملNTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma
Neurotensin (NTS) is a neuropeptide distributed in central nervous and digestive systems. In this study, the significant association between ectopic NTS expression and tumor invasion was confirmed in hepatocellular carcinoma (HCC). In primary HCC tissues, the NTS and neurotensin receptor 1 (NTR1) co-expression (NTS+NTR1+) is a poor prognostic factor correlated with aggressive biological behavio...
متن کاملLeptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways.
Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a ...
متن کاملMesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression.
Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016